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Abstract
We present a microscopic model for calculating the AC conductivity of a finite length line
junction made up of two counter- or co-propagating single mode quantum Hall edges with
possibly different filling fractions. The effect of density–density interactions and a local
tunneling conductance (σ ) between the two edges is considered. Assuming that σ is
independent of the frequency ω, we derive expressions for the AC conductivity as a function of
ω, the length of the line junction and other parameters of the system. We reproduce the results
of Sen and Agarwal (2008 Phys. Rev. B 78 085430) in the DC limit (ω → 0), and generalize
those results for an interacting system. As a function of ω, the AC conductivity shows
significant oscillations if σ is small; the oscillations become less prominent as σ increases. A
renormalization group analysis shows that the system may be in a metallic or an insulating
phase depending on the strength of the interactions. We discuss the experimental implications
of this for the behavior of the AC conductivity at low temperatures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A line junction (LJ) [1–9] separating two edges of fractional
quantum Hall (QH) states allows the realization of one-
dimensional systems of interacting electrons for which the
Luttinger parameter can be tuned [10–12]. A LJ is formed by
using a gate voltage to create a narrow barrier which divides a
fractional QH state such that there are two chiral edges flowing
in opposite directions (counter-propagating) on the two sides
of the barrier [13–17]. For a QH system corresponding to a
filling fraction which is the inverse of an odd integer such as
1, 3, 5, . . ., the edge consists of a single mode which can be
described by a chiral bosonic theory [18]. In a system with
two QH states separated by a line junction, the edges on the
two sides of the LJ generally interact with each other through
a short-range density–density interaction (screened Coulomb
repulsion); such an interaction can be treated exactly in the
bosonic language. The physical separation between the two
edges and, therefore, the strength of the interaction can be
controlled by a gate voltage. In general, a LJ also allows
tunneling between the two edges; if the LJ is disordered,
the tunneling amplitude is taken to be a random variable.
The tunneling amplitude is also dependent on the separation
between the edges.

Recently, QH systems with a sharp bend of 90◦ have
been fabricated [19, 20]. An application of an appropriately

tilted magnetic field in such a system can produce QH states
on the two faces which have different filling fractions ν1 and
ν2, since the filling fractions are governed by the components
of the magnetic field perpendicular to the faces. The two
perpendicular components can even have opposite signs if the
magnetic field is sufficiently tilted. Depending on whether ν1

and ν2 have the same sign or opposite signs, the edge states
on the two sides of the line separating the two QH states may
propagate in opposite directions or in the same direction; we
call these counter- or co-propagating edges respectively. A
QH system with a bend therefore provides a new kind of LJ
in which the filling fractions can be different on the two sides
of the LJ, and the two edges can be co-propagating.

In an earlier paper [21], we developed a microscopic
model for the direct current (DC) conductivity of a finite
length LJ with either counter- or co-propagating edges. The
conductivity is expressed by a current splitting matrix Sdc,
which depends on the filling fractions ν1 and ν2, the choice of
current splitting matrices which provide boundary conditions
for the bosonic fields at the two ends of the LJ, the tunneling
conductance per unit length σ , and the length L of the LJ.
The Coulomb interaction between the edges was ignored
in the calculation of the DC conductivity, but the effect
of the interaction was then taken into account to study the
renormalization group flow of the tunneling conductance and
therefore the conductivity.
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http://dx.doi.org/10.1088/0953-8984/21/37/375601
http://stacks.iop.org/JPhysCM/21/375601


J. Phys.: Condens. Matter 21 (2009) 375601 A Agarwal and D Sen

(a) (b)

Figure 1. Schematic picture of a line junction with (a) counter-propagating and (b) co-propagating edges, with two incoming and two
outgoing edges.

In this paper, we will generalize the results of [21] to find
the alternating current (AC) conductivity along a LJ; the inter-
edge interactions will be taken into account in this calculation.
In the limits in which the AC frequency ω goes to zero, we will
recover the results obtained in [21].

The paper is organized as follows. In section 2, we
introduce a microscopic model for the LJ and discuss the
general form of the current splitting matrix S for both DC and
AC. We obtain the condition for zero power dissipation. We
also discuss the possible boundary conditions which can be
imposed at the ends of the line junction; if we require that the
commutation relations of the incoming and outgoing bosonic
fields be preserved, we find that the boundary conditions must
take one of two forms, which are described by matrices S0 and
S1. In section 3, we introduce short-range interactions (whose
strength is given by a parameter λ) and a local tunneling
conductance (denoted by σ ) between the edges of the line
junction. We then discuss the case of counter-propagating
edges and present the frequency dependent matrix Sac for
some simple choices of the filling fractions and velocities
of the edge modes. In section 4, we discuss the case of
co-propagating edges and present the matrix Sac, again for
some simple cases. We present some plots of the elements
of Sac as functions of the AC frequency ω. In section 5, we
discuss the implications of a renormalization group analysis
for the low temperature behavior of Sac, and how this may be
checked experimentally. Section 6 summarizes our results and
discusses possible extensions of our work. In the appendix we
present the details of the calculations for the general case of
arbitrary filling fractions and velocities of the edge modes.

2. Model for the line junction

We consider a LJ with two different QH liquids on the two
sides. The edges of the QH liquids on the two sides of the LJ
are assumed to be spatially close to each other; hence there
are density–density interactions between the two edges, and
electrons can also tunnel between the edges. For simplicity,
we will assume that the interaction strength and the tunneling
conductance have the same magnitude at all points along the
LJ. We will also assume that the incoming and outgoing fields
connect continuously to the corresponding fields at each end of
the LJ.

Consider the counter-propagating (co-propagating) LJ
systems shown in figures 1(a) and (b) respectively. The
currents (voltages) in the two incoming edges are denoted as I1

(V1) and I2 (V2), and in the two outgoing edges as I3 (V3) and
I4 (V4). Here edges 1 and 3 correspond to a QH system with
filling fraction ν1, while edges 2 and 4 correspond to a system
with filling fraction ν2. We also assume that the QH edge
modes are locally equilibrated; discussions of equilibration at
zero frequency have been presented in [22, 23]. Namely, at
each point x , which may lie either on one of the outer edges
1–4 or inside the line junction (where x goes from 0 to L), we
assume, for small bias, that

Ii (x, t) = e2

h
νi Vi(x, t). (1)

In the linear response regime (when the applied voltage bias
is small), we expect the outgoing currents to be related to the
incoming ones in a linear way. Let us denote the alternating
current on edge i by Ii = αi ei(ki x−ωt) + c.c, where αi is a
complex number in general. The numbers αi are related by a
current splitting matrix Sac(ω) as
(
α3

α4

)
= Sac

(
α1

α2

)
, where

Sac =
(

r(ω) t̄(ω)
t (ω) r̄(ω)

)
. (2)

When all the edge states are in equilibrium, the power
dissipated is given by the difference of the incoming and
outgoing powers, namely,

P = 1
2 [I1V1 + I2V2 − I3V3 − I4V4]. (3)

If there is no power dissipation in the system (we will see below
that this is true if the tunneling conductance is zero all along the
LJ), then the average over one oscillation cycle of the incoming
energy must be equal to the outgoing energy. This imposes the
following condition

S†
ac

(
1/ν1 0

0 1/ν2

)
Sac =

(
1/ν1 0

0 1/ν2

)
, (4)

2
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or, more explicitly,

|r(ω)|2
ν1

+ |t (ω)|2
ν2

= 1

ν1
,

|r̄(ω)|2
ν2

+ |t̄(ω)|2
ν1

= 1

ν2
,

and
r∗(ω)t̄(ω)

ν1
+ t∗(ω)r̄(ω)

ν2
= 0.

(5)

When the incoming currents are DC in nature, the currents
satisfy a linear relation and are related by a current splitting
matrix Sdc. This is a real matrix which can be characterized by
a single parameter γ (called the scattering coefficient); it has
the general form [21, 24, 25]

(
I3

I4

)
=

(
1 − 2γ ν2

ν1+ν2

2γ ν1

ν1+ν2
2γ ν2

ν1+ν2
1 − 2γ ν1

ν1+ν2

)(
I1

I2

)
. (6)

The power dissipated is the difference of the incoming and
outgoing energy flux (3), and it is given by

P = e2

h

2ν1ν2

ν1 + ν2
γ (1 − γ )(V1 − V2)

2. (7)

The condition that P � 0 requires that 0 � γ � 1. No power
is dissipated if γ = 0 or 1, and maximum power dissipation
occurs when γ = 1/2.

The end points of the LJ shown in figure 1 lie at x = 0
and L. At each of these ends, we have two incoming edges and
two outgoing edges; two of these correspond to the outer edges
marked I1, I2, I3, and I4, while the other two edges are internal
to the LJ and are marked J1 and J2. An important ingredient of
the model for such a system is the boundary condition which
should be imposed at the end points. In [21], it was shown
that there are two possible boundary conditions which can
be imposed at each end; both of these allow us to smoothly
connect the bosonic fields which may be used to calculate the
currents in the system. The two possible boundary conditions
correspond to using one of two matrices S0 or S1 to related the
incoming and outgoing modes at each end, where

S0 =
(

1 0
0 1

)
, and

S1 = 1

ν1 + ν2

(
ν1 − ν2 2ν1

2ν2 ν2 − ν1

)
. (8)

In this paper, we will only consider the boundary condition
corresponding to the matrix S0; this is physically the more
plausible boundary condition, since it just connects the
incoming edge to the outgoing one for each QH liquid
separately.

3. The counter-propagating case

We will now present a microscopic model of a LJ for the case of
counter-propagating edges. For simple filling fractions νi given
by the inverse of an odd integer, each edge is associated with
a single chiral boson mode. For the counter-propagating case,
shown in figure 1(a), the mode on one edge propagates from

x = 0 to L, while the mode on the other edge propagates in the
opposite direction; let us call the corresponding bosonic fields
as φ1 (right mover) and φ2 (left mover) respectively. In the
absence of density–density interactions between these edges,
the Lagrangian is given by

L = 1

4πν1

∫ L

0
dx ∂xφ1(−∂t − v1∂x)φ1

+ 1

4πν2

∫ L

0
dx ∂xφ2(∂t − v2∂x)φ2, (9)

where vi denotes the velocity of mode i . The density and
current fields are defined as

ρ1 = ∂xφ1/(2π), J1 = −∂tφ1/(2π),

ρ2 = −∂xφ2/(2π), J2 = ∂tφ2/(2π).
(10)

For a short-range density–density interaction between the two
edges, the term in the Lagrangian is of the form

Lint = λ

4π
√
ν1ν2

∫ L

0
dx ∂xφ1∂xφ2, (11)

where λ is the interaction strength (positive for repulsive
interactions) with the dimensions of velocity.

The equations of motion for the Lagrangian given in
equations (9) and (11), written in terms of the density and the
current fields, are

J1 − v1ρ1 − λν1

2
√
ν1ν2

ρ2 = 0,

J2 + v2ρ2 + λν2

2
√
ν1ν2

ρ1 = 0.

(12)

A model of tunneling at zero frequency between different
edges or point contacts in a QH system has been developed
in [22]. By adding a time derivative term in their expressions,
we can model tunneling at finite frequencies between the two
edges along the LJ using the following equations

∂tρ1 + ∂x J1 = σh

e2

(
J2

ν2
− J1

ν1

)
,

∂tρ2 + ∂x J2 = σh

e2

(
J2

ν2
− J1

ν1

)
,

(13)

where σ is the conductance per unit length across the LJ.
Physically, equations (13) are the continuity equations for
the edge states with a source term [22], the source term
being the current tunneling into the system because of the
voltage difference between the corresponding points on the
line junction, Isource = σ(V2 − V1) = (σh/e2)(J2/ν2 −
J1/ν1). We will assume σ to be constant along the LJ. Unlike
equations (12), the model of tunneling given in equations (13)
cannot be derived from any Lagrangian since it is non-unitary,
and a non-zero value of σ implies that there is dissipation in
the system.

3
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For the DC case, in a non-interacting system, the current
splitting matrix is given by equation (6), and γ is given by [21]

γ = ν1 + ν2

2

1 − e−L/lc

ν2 − ν1e−L/lc
and

l−1
c = σh

e2

(
1

ν1
− 1

ν2

)
(14)

when ν1 �= ν2. For the special case [3] of ν1 = ν2 = ν, we
obtain γ = [1 + νe2/(σ Lh)]−1.

Now we solve the problem for the general case with
interactions and for an arbitrary value of ω. We can combine
equations (12) and (13) to obtain(

∂t + v1∂x + α

ν1

)
J1 +

(
λν1

2
√
ν1ν2

∂x − α

ν2

)
J2 = 0,

(
∂t − v2∂x + β

ν2

)
J2 −

(
λν2

2
√
ν1ν2

∂x + β

ν1

)
J1 = 0,

(15)

where

α = σh

e2

(
v1 + λν1

2
√
ν1ν2

)
,

β = σh

e2

(
v2 + λν2

2
√
ν1ν2

)
.

(16)

Solving these equations with appropriate boundary conditions
gives us the current splitting matrix Sac. We will work with
the boundary condition that connects the fields along the
LJ continuously to the corresponding incoming and outgoing
fields, i.e., the incoming field I1/2 = J1/2(0) at x = 0 and
J1/2(L) = I3/4 at x = L. The most general case will have
ν1 �= ν2 and v1 �= v2. We solve equations (15) in its most
general form in the appendix and present the matrix Sac. In this
section we present results for some relatively simple cases.

For the case of a LJ with interactions but no tunneling
(σ = 0), the same filling fraction (ν1 = ν2 = ν) and the
same velocity (v1 = v2 = v), we find that

t (ω) = t̄(ω) = − λ sin(kL)

2[iṽ cos(kL)+ v sin(kL)] ,

r(ω) = r̄(ω) = iṽ

iṽ cos(kL)+ v sin(kL)
,

(17)

where k = ω/ṽ and ṽ = √
v2 − λ2/4. Note that there

is no dissipation in this case, and the AC current splitting
matrix satisfies equation (4). We also note that this solution is
consistent with equation (11) of [2] in the limit of λ � v, (our
r(ω) corresponds to their t (ω)). Similar expressions have also
appeared in [26, 27]. Also note that in the DC limit (ω → 0),
|r(ω)| = 1. This implies a conductance across the LJ, G =
νe2/h. This is expected and is consistent with [28–31].

For the case of the same νs and the same velocities but
with the tunneling σ switched on, we have

t (ω) =
2(k2v2ν2 + (α−iνω)2)

kν(2vα + λ(α−iνω)) cot(kL)+ (−k2vλν2 + 2α(α−iνω))
,

r(ω) = 1

cos(kL)+ (−k2vλν2+2α(α−iνω)) sin(kL)
kν(2vα+λ(α−iνω))

, (18)

where α = (σh/e2)(v + λ/2), and

k = ω√
v2 − λ2/4

(
1 + 2iσh

νe2ω
(v + λ/2)

)1/2

. (19)

The expression for the most general case is given in the
appendix in equations (A.3) and (A.5). In the DC limitω → 0,
equation (A.3) gives k1 → il−1

c = i(σh/e2)(ν−1
1 − ν−1

2 ) and
k2 → 0, while equation (A.5) gives

r(ω → 0) = ν1 − ν2

ν1 − ν2eL/lc
. (20)

Comparing this with the expression in equation (6), we get the
same value of γ as in equations (14).

In figure 2, we show the absolute values of the various
reflection and transmission amplitudes as functions of the
frequency ω (in units of v1/L which has been set equal
to unity) for various choices of the filling fractions νi ,
velocities vi , length L, interaction λ (in units of v1 = 1),
and tunneling conductance per unit length σ (in units of
e2/(hL)). Figures 2(a) and (b) show the cases of σ = 0
(zero tunneling) for equal filling fractions and different filling
fractions respectively; in figure 2(a), |r | = |r̄ | and |t| = |t̄|
by symmetry. In both figures, we see prominent oscillations
as a function of ω. This is clear from equation (17) where we
see that k is real and the different amplitudes oscillate with a
wavelength 2π/k. In the ω → 0 limit, |r | = |r̄ | = 1 for
both cases, as is evident from equation (20). Both these cases
are dissipationless and the amplitudes satisfy equation (4). In
figure 2(b), the curves for |r | and |r̄ | coincide for all ω; this
can be shown to hold if σ = 0, no matter what the filling
fractions and velocities are. Figures 2(c) and (d) show the
cases of σ �= 0 for equal filling fractions and different filling
fractions respectively; we have assumed for simplicity that σ
itself does not depend on ω. In this case, k is complex as
shown in equations (19) and (A.3); the imaginary part of k
remains finite for large ω. Hence the different amplitudes show
oscillations, but they also decay as ω increases. In the ω → 0
limit, r is given by equation (20).

Note that we have treated the fully interacting problem in
this section, but in the DC limit ω → 0, we recover the results
for the non-interacting case given in [21]. This is because in
that limit, the terms involving ∂tρ vanish in equations (13). The
currents Ji (x) can then be found from equations (13) alone,
and equations (12) becomes unnecessary. The values of the
currents therefore do not depend on the interaction parameter λ
and the velocities vi appearing in equations (12). However, for
the AC case, equations (12) and (13) are both required to find
the currents, and the results are different for the interacting and
non-interacting cases in general. It is also interesting to note
that if there is no tunneling (σ = 0), the corrections to lowest
order in the AC frequency for the reflection and transmission
amplitudes in equations (17) are of order ω, but if there is
tunneling (σ �= 0), the lowest order corrections are of order
ω1/2. This follows from equation (19) which shows that for
small ω, k ∼ ω if σ = 0, but k ∼ ω1/2 if σ �= 0.

4
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Figure 2. Absolute values of AC current splitting amplitudes as functions of frequency ω for a counter-propagating line junction, for
interaction λ = 0.5. (a) and (b) correspond to tunneling σ = 0, while (c) and (d) are for σ = 0.5. The units of ω, λ and σ are explained in the
text.

4. The co-propagating case

In the absence of density–density interactions between the co-
propagating modes, the Lagrangian is given by

L = 1

4πν1

∫ L

0
dx ∂xφ1(−∂t − v1∂x)φ1

+ 1

4πν2

∫ L

0
dx ∂xφ2(−∂t − v2∂x)φ2. (21)

Here both the edge modes are taken to be propagating from
x = 0 to L. The corresponding density and current fields are
defined as ρ1/2 = ∂xφ1/2/(2π) and J1/2 = − ∂tφ1/2/(2π).
The short-range repulsive density–density interaction between
the two edges takes the form

Lint = − λ

4π
√
ν1ν2

∫ L

0
dx ∂xφ1∂xφ2, (22)

where λ is the interaction strength (positive for repulsive
interactions) with the dimensions of velocity.

The equations of motion for the Lagrangian corresponding
to equations (21) and (22), written in terms of the density and

the current fields, are

J1 − v1ρ1 − λν1

2
√
ν1ν2

ρ2 = 0,

J2 − v2ρ2 − λν2

2
√
ν1ν2

ρ1 = 0.

(23)

The tunneling along the LJ will be modeled using the
following equations

∂tρ1 + ∂x J1 = σh

e2

(
J2

ν2
− J1

ν1

)
,

∂tρ2 + ∂x J2 = −σh

e2

(
J2

ν2
− J1

ν1

)
.

(24)

We can combine equations (23) and (24) to give

(
∂t + v1∂x + α

ν1

)
J1 +

(
λν1

2
√
ν1ν2

∂x − α

ν2

)
J2 = 0,

(
∂t + v2∂x + β

ν2

)
J2 +

(
λν2

2
√
ν1ν2

∂x − β

ν1

)
J1 = 0,

(25)

5
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Figure 3. Absolute values of AC current splitting amplitudes as functions of frequency ω for a co-propagating line junction, for interaction
λ = 0.5. (a) and (b) correspond to tunneling σ = 0, while (c) and (d) are for σ = 0.5. The units of ω, λ and σ are explained in the text.

where

α = σh

e2

(
v1 − λν1

2
√
ν1ν2

)
,

β = σh

e2

(
v2 − λν2

2
√
ν1ν2

)
.

(26)

Solving these equations with the appropriate boundary
conditions gives us the current splitting matrix.

For the DC case, in a non-interacting system, the current
splitting matrix is given by equation (6), and γ is given by [21]

γ = 1 − e−L/lc

2
and l−1

c = σh

e2

(
1

ν1
+ 1

ν2

)
. (27)

We now turn to the AC case. For the simplest case of
the same filling fraction (ν1 = ν2 = ν), the same velocity
(v1 = v2 = v)and no tunneling (σ = 0), we obtain

t (ω) = 2(eiLk1 − eiLk2 )(ω − vk1)(ω − vk2)

λω(k1 − k2)
,

r(ω) = (ω − vk2)k1e−iLk1 − (ω − vk1)k2e−iLk2

ω(k1 − k2)
,

(28)

where k1 = ω/(v − λ/2) and k2 = ω/(v + λ/2). Note
that this is the dissipationless case and the amplitudes satisfy
equation (4), and in the DC limit, r → 1.

For the case of the same filing fractions (ν1 = ν2 = ν),
the same velocities (v1 = v2 = v), but σ �= 0, we get

t (ω) = [2i(eiLk1 − eiLk2 )(α − iν(ω − vk1))(α − iν

× (ω − vk2))]/[(2vαν + λν(α − iνω))(k1 − k2)]
r(ω) = [(eiLk2 − eiLk1 )(2α(α − iνω)+ λvν2k1k2)

+ iλ(α − iνω)(k1eiLk1 − k2eiLk2 )+ 2ivαν

× (k1eiLk2 − k2eiLk1 )]/[iν(2αv + λ(α − iνω))

× (k1 − k2)]l,

(29)

where the values of k1/2 are given by equation (A.7).
The expression for the most general case is given in the

appendix in equations (A.7) and (A.9). In the DC limitω → 0,
equation (A.7) gives k1 → il−1

c = i(σh/e2)(ν−1
1 + ν−1

2 ) and
k2 → 0, while equations (A.9) gives

r(ω → 0) = ν1 + ν2 e−L/lc

ν1 + ν2
. (30)

Comparing this with the expression in equation (6), we find the
same value of γ as in equations (27).

In figure 3, we show the absolute values of the various
reflection and transmission amplitudes as functions of the
frequency ω (in units of v1/L = 1) for various choices

6
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of νi , vi , L, λ (in units of v1 = 1), and σ (in units of
e2/(hL)). Figures 3(a) and (b) show the case of σ = 0
(zero tunneling) for equal filling fractions and different filling
fractions respectively, while figures 2(c) and (d) show the case
of σ �= 0, again assuming that σ does not depend on ω. As in
figure 2, we see prominent oscillations as a function of ω when
σ = 0, and both oscillations and decay when σ �= 0. Just as in
figure 2(b), we note that the curves for |r | and |r̄ | coincide for
all ω in figure 3(b) also.

Once again we note that we have treated the fully
interacting problem here, but in the DC limit we recover the
non-interacting results given in [21]. The reasons for this are
the same as those explained at the end of section 3. For the AC
case, the expression for the current splitting matrix is different
for the interacting and the non-interacting cases.

5. Renormalization group and experimental
implications

Before discussing how measurements of the AC reflection and
transmission amplitudes can provide information about the
parameters of the system such as the tunneling conductance
σ , the interaction strength λ and the edge mode velocities vi ,
we have to consider the renormalization group (RG) flow of
σ . For the DC case, this has been discussed in [21]. Briefly,
the tunneling amplitude is given by a term in the Hamiltonian
density

Htun = ξ(x)ψ†
1 (x)ψ2(x)+ h.c., (31)

where ψi (x) denotes the electron annihilation operator at
point x on edge i of the LJ. The tunneling conductance σ
is proportional to |ξ |2 when |ξ | is small. The presence of
impurities near the LJ makes ξ(x) a random complex variable;
let us assume it to be a Gaussian variable with a variance W .
Then W satisfies an RG equation; to lowest order (i.e., for
small ξ ), this is given by [3, 32]

dW

d ln l
= (3 − 2dt)W, (32)

where l denotes the length scale, and dt is the scaling
dimension of the tunneling operator ψ

†
1ψ2 appearing in

equation (31). We will present expressions for dt below for
both counter- and co-propagating cases. There is also an RG
equation for the interaction strength λ, but that can be ignored
if W is small.

Next, let us assume that the phase de-coherence length
LT = h̄v/(kBT ) (the length beyond which electrons lose
phase coherence due to thermal smearing) is much smaller than
both the length L and the scattering mean free path Lm of the
LJ. Successive backscattering events are then incoherent, and
quantum interference effects of disorder are absent. One can
then show [3] that σ scales with the temperature T as T 2dt−2.
It therefore seems that σ L → 0 as T → 0 if dt > 1. However,
it turns out that this is true only if dt > 3/2, i.e., if W is an
irrelevant variable according to equation (32). If dt > 3/2
(called the metallic phase), one can simultaneously have L 	
LT (which justifies cutting off the RG flow at LT rather than at
L), and σ L → 0, i.e., LT 	 1 and LT 2dt−2 → 0, for some

range of temperatures. Further, Lm scales with temperature [3]
as T 2−2dt and LT ∼ T −1. Thus throughout the metallic phase,
Lm 	 LT as T → 0. But if dt < 3/2 (i.e., W is a relevant
variable), we have L/LT ∼ LT 	 1 and T 2dt−3 → ∞; hence
σ L ∼ LT 2dt−2 → ∞ (we call this the insulating phase).

The above analysis breaks down if one goes to very low
temperatures where LT � L or Lm. In that case, the RG flow
of W has to be cut off at the length scale L or Lm, rather than
LT; hence σ and therefore the scattering coefficient γ become
independent of the temperature T .

The scaling dimension dt can be computed using
bosonization [21]. For the counter-propagating case, we find
that

dt = 1

4K

[
(1 + K 2)

(
1

ν1
+ 1

ν2

)
−2(1 − K 2)√

ν1ν2

]
,

where K =
√
v1 + v2 − λ

v1 + v2 + λ
. (33)

Thus dt depends on the interaction strength λ and the velocities
vi . (The stability of the system requires that 4v1v2 > λ2.) For
the co-propagating case, we have

dt = 1

2ν1
+ 1

2ν2
, (34)

which is independent of λ and the vi .
We can now discuss the experimental implications of our

results for the various reflection and transmission amplitudes
as a function of the temperature. As mentioned earlier, a
gate voltage can be used to control the distance between the
two edges of the LJ. Making the gate voltage less repulsive
for electrons is expected to reduce the distance between the
edges; this should increase both the strength of the density–
density interactions as well as the tunneling conductance [3].
In this way, one may be able to vary the scaling dimension
dt across the value 3/2 for the case of counter-propagating
edges in the LJ. We then see that quite different things should
occur depending on whether the system is in the metallic phase
(dt > 3/2) or in the insulating phase (dt < 3/2). In the
metallic phase, σ L → 0 as T → 0; based on figures 2 and 3,
we expect that oscillations versus ω of the various amplitudes
should become more prominent at low temperatures. In the
insulating phases, σ L → ∞ as T → 0; figures 2 and 3
then indicate that the oscillations versus ω of the different
amplitudes should become less prominent at low temperatures.
It would be interesting to check this qualitative prediction
experimentally.

6. Discussion

In this paper, we have discussed the response of a LJ separating
two QH states to an AC voltage in the linear response (or small
bias) regime. Depending on the filling fractions on the two
sides of the LJ, the edges of the LJ may be counter-propagating
or co-propagating. We have presented a microscopic model
for the system, which includes short-range density–density
interactions and electron tunneling between the two edges. The
AC response can be described by a current splitting matrix

7



J. Phys.: Condens. Matter 21 (2009) 375601 A Agarwal and D Sen

Sac; we have presented expressions for this matrix in terms
of the AC frequency ω, the length of the LJ, the tunneling
conductance, the strength of the interaction between the edges
of the LJ, the filling fractions, and the velocities of the modes
on the two sides of the LJ. In general, the elements of Sac

oscillate with the frequency ω; the amplitude of oscillations
depends on ω and the tunneling conductance σ across the
LJ. We find the interesting result that the matrix Sac does
not depend on the interaction strength and the velocities in
the DC limit ω → 0, but does depend on those parameters
for non-zero frequencies. (The fact that the DC conductivity
is independent of the interaction strength has been observed
earlier in the context of quantum wires modeled as non-
chiral Tomonaga–Luttinger liquids [26–31, 33, 34].) The low
temperature behaviors of the elements of Sac can then be
predicted based on a renormalization group analysis. In the
case of counter-propagating edges, we find that, depending on
the interaction strength, the system can be in either a metallic
phase or an insulating phase. The two phases exhibit quite
different behaviors of Sac as we go to low temperatures.

We emphasize that in the absence of any tunneling
between the two edges, our calculation is valid in the linear
response (small AC amplitude) regime and only for frequencies
ω which lie within the linearization regime for each LL wire
(i.e., ω < v/α). In the presence of inter-edge tunneling
also, we have assumed that the current is proportional to the
potential (voltage) at every point with no phase difference
between the two (equation (1)). This is only true if ω is less
than the inverse of the relaxation time τ (for equilibration after
each tunneling event). However, in the absence of a detailed
theory of equilibration at finite frequencies, we do not know
the precise form of τ . Another limitation of our calculation
is that the intrinsic frequency dependence of σ is not known,
although the RG analysis discussed in section 5 gives an idea of
the length scale dependence of σ arising due to the interactions.
We note that our various expressions for t (ω) and r(ω) will
remain valid even if we take σ to be frequency dependent.
However, figures 2(c) and (d) and 3(c) and (d) have been made
under the assumption that σ does not depend on ω.

Before ending, we would like to mention some other
studies of QH systems with multiple filling fractions [35–37].
It may be interesting to extend our studies of AC response
to these systems. Finally, we note that the AC response of
non-chiral Tomonaga–Luttinger liquids with disorder has been
studied earlier in some papers [38–41].
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Appendix. Details of calculations

We first find the current splitting matrix for the counter-
propagating case. We start with the following guess for the

edge currents along the LJ,

J1 = (a1eik1 x + a2eik2 x)e−iωt ,

J2 = (b1eik1 x + b2eik2 x)e−iωt .
(A.1)

These guess solutions must satisfy equation (15) for all values
of x along the LJ. This gives us the following equations

(
−iω + iv1k1 + α

ν1

)
a1 +

(
ik1λν1

2
√
ν1ν2

− α

ν2

)
b1 = 0,

(
−iω + iv1k2 + α

ν1

)
a2 +

(
ik2λν1

2
√
ν1ν2

− α

ν2

)
b2 = 0,

(A.2)

where α = (σh/e2)(v1 + λν1/(2
√
ν1ν2)) and k1/2 is given by

k1/2 = 1

2ṽ2

[
ω(v2 − v1)+ iṽ2l−1

c ±
[
(ω(v2 − v1)+ iṽ2l−1

c )2

+ 4ṽ2

(
ω2 + iσhω

e2

(
v1

ν1
+ v2

ν2
+ λ√

ν1ν2

))]1/2]
, (A.3)

where ṽ = √
v1v2 − λ2/4, and l−1

c = (σh/e2)(ν−1
1 − ν−2

2 ).
Now consider an incoming current incident on the LJ from
edge 1, and no incoming current from edge 3. Then we
have the following equations at the two end points of the LJ
corresponding to the matrix S0 defined in equations (8),

a1 + a2 = 1, a1eik1 L + a2eik2l = r(ω),

b1 + b2 = t (ω), b1eik1 L + b2eik2l = 0.
(A.4)

Solving these six simultaneous equations gives us two elements
of the AC current splitting matrix. For the most general case,
we obtain

t (ω) = [2ν2(−eiLk1 + eiLk2 )(−iω + ik1v1 + α/ν1)

× (−iω + ik2v1 + α/ν1)]/[eiLk2(−iω + ik2v1 + α/ν1)

× (2α − iλk1
√
ν1ν2)− eiLk1 (−iω + ik1v1 + α/ν1)

× (2α − iλk2
√
ν1ν2)],

r(ω) = [eiLk1(k1 − k2)ν1(λν2(iα + ων1)

+ 2iαv1
√
ν1ν2)]/[2(−1 + eiL(k1−k2))α(α − iων1)

√
ν1ν2

− k2ν1(λν2(iα + ων1)e
iL(k1−k2) + 2iαv1

√
ν1ν2)

+ k1ν1(λν2(iα + ων1 + k2v1ν1(−1 + eiL(k1−k2)))

+ 2iαv1
√
ν1ν2eiL(k1−k2))].

(A.5)

Repeating this calculation for the case with an incoming unit
current in wire 3 and no incoming current in wire 1 will give
us the other two amplitudes, t̄(ω) and r̄(ω), of the AC current
splitting matrix.

For the co-propagating case, we again start from the
guess solution given by equations (A.1). Substituting them in
equations (23), we get the following equations

(
−iω + iv1k1 + α

ν1

)
a1 +

(
ik1λν1

2
√
ν1ν2

− α

ν2

)
b1 = 0,

(
−iω + iv1k2 + α

ν1

)
a2 +

(
ik2λν1

2
√
ν1ν2

− α

ν2

)
b2 = 0,

(A.6)
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where α = (σh/e2)(v1 − λν1/(2
√
ν1ν2)) and k1/2 is given by

k1/2 = 1

2ṽ2

[
ω(v2 + v1)+ iṽ2l−1

c ±
[
(ω(v2 + v1)+ iṽ2l−1

c )2

− 4ṽ2

(
ω2 + iσhω

e2

(
v1

ν1
+ v2

ν2
− λ√

ν1ν2

))]1/2]
. (A.7)

where ṽ = √
v1v2 − λ2/4, and l−1

c = (σh/e2)(ν−1
1 + ν−2

2 ).
From the boundary conditions, we get

a1 + a2 = 1, a1eik1 L + a2eik2l = r(ω),

b1 + b2 = 0, b1eik1 L + b2eik2l = t (ω).
(A.8)

Solving these six simultaneous equations gives us

t (ω) = [2iν2(e
iLk1 − eiLk2 )(α − iν1(ω − k1v1))

× (α − iν1(ω − k2v1))]/[(k1 − k2)ν1(2αv1ν1

+ λ
√
ν1ν2(α − iων1))],

r(ω) = [2iα
√
ν1ν2(e

iLk1 − eiLk2 )(α − iων1)

+ k1ν1(λν2(−iν1k2v1eiLk2 + (α − iων1 + iν1k2v1)e
iLk1 )

+ 2αv1
√
ν1ν2eiLk2 )− k2ν1(λν2(α − iων1)e

iLk2

+ 2αv1
√
ν1ν2eiLk1 )]/[(k1 − k2)ν1(λν2(α − iων1)

+ 2αv1
√
ν1ν2)].

(A.9)
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